SOLUTION TO A REVERSE PROBLEM IN THERMOELASTICITY
BY ELECTRICAL SIMULATION
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Devices are discussed which make it feasible to extend the application of electrical simula~
tors and use them for solving reverse problems in thermoelasticity.

In accelerated cyclic heat-resistance testing of structures one must determine the heating mode of
some designed element from the given magnitude of thermal stresses. It then becomes necessary to solve
a reverse problem in thermoelasticity, where the time characteristic of thermal stresses at some point
in the structural element is given and the boundary conditions of the first, of the second, or of the third
kind are to be determined.

Just as the solution of reverse problems in heat conduction [1], the solution here also involves cer-
tain difficulties., When solving a reverse problem in thermoelasticity, one finds it necessary to impose
some limitations on the given stress—time characteristic. These aspects will be discussed here, with
regard to solving one such reverse problem in thermoelasticity by electrical simulation.

Let the structural element, its shape and dimensions shown in Fig. 1, consist of thermally thin
cover plates 1 and a supporting girder 2 made of different materials and joined together. This structural
element is heated symmetrically at both cover plates. It will be assumed that, for example, the heating
is effected under boundary conditions of the third kind, with the ambient temperature T and the heat-trans-
fer coefficient o being known functions of time.

Between the plates and the I-beam there takes place contactive heat-transfer characterized by the
coefficient ce.

If T; and T, are the solutions to the equation of heat conduction
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7l then in the two-dimensional problem of thermoelasticity the
2d conditions of equilibrium and compatibility with respect to strains
] T in a plate 1 and in the girder 2
— Sl E P g
sl 4 L 4 d h
< 28, *i 615 o, dx -+ 6, Y 0,dx; + 6, { oy dx, =0, 8, =g, =2
~N I/ 0 0 [
x| yield the following expressions for the thermal stresses in both
] ] components 1 and 2
[ ] ] .
7, x o; = EA — a,E0,, (3)
Fig. 1. Designed element, where
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The time characteristics of T, «, and the thermal stresses oy, which have been calculated accord-
ing to Eq. (3) for a point of the structural element at section x =7, are shown in Fig. 2a,

Let it be required to accelerate the test, i.e., to shorten the time heat-resistance test cycles under
the same extreme levels of thermal stresses, An example of such an accelerated stress cycling has been
selected here, on some rational basis, for a point at x =1 and is depicted by curve 3 in Fig. 2b,

In order to determine the needed time characteristic of the ambient temperature T = T(7) for given
values of the heat-transfer coefficient o = (1), we used an electrical model shown schematically in Fig. 3.

The electrical model represents a closed-loop static system of automatic regulation which includes
an RC network for simulating the geometrical dimensions and the thermophysical properties of the ma-
terial of the designed element, a heat-transfer simulator (HTS) for selecting the appropriate kind of
boundary conditions, and a stress simulator (ST) for establishing the necessary transient thermal stresses
at the point mnder study. The regulation system includes also an amplifier (A), to the input of which are
applied uniscale bipolar signals of the reference-levels and the actual-level stress in the designed element.

The actual stress level is determined according to formula (3) by the method of finife difference
approximations. Here resistors R, . .. , R, synthesize the first term on the right-hand side of the equa-
tion, the inverter (INV) and resistor Ry, synthesize the second term on the right-hand side, the summator
(SU) adds its input signals, and the measuring device (MD) records the boundary conditions.

In order to establish the stability limits of the regulation system, we have analyzed a simpler ver-
sion of it. The RC network was represented here by three aperiodic first-order terms.

In this case, with the amplifier and the inverter treated as linear devices, the transfer function
of the open-loop regulation system can be written as follows:
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Fig. 2. Original cycle (a) and accelerated cycle (b): 1)
T; 2) @; 3) 0. Time 71073 sec in (a) and 7 -10~2 sec

in (b).
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where

No= (1 by (1 map) (15 mgp).

For the transfer function of the closed-loop system we have

Fig, ti;;. Structflral diagram of W (p) — Wi _
e electrical model,
The characteristic equation will be written as
kylky (1 == myp) (1 - myp) - by (1 - myp) + ky — By - N = 0.
Inserting here the numerical values of the parameters, we obtain
4.3p% + Ry (12.4p* 4- 4.9p) - 18.4p* - 17.6p -+ 1 == 0.

Using Routh's algebraic criterion, we find that the system remains dynamically stable with an

amplifier gain within the 10-1000 range, An additional check by Mikhailov's criterion confirms that the
system with such parameter values is stable,

Wewill now discuss the limitation which must be imposed on the input signal simulating the thermal stress
o,

The transform of the output signal in a closed-loop regulation system is

4(p) i =W () 1(p) gy 4
Let a harmonic signal
u(p) = Mg (p) (5)
from the stress simulator (SU) appear at the input, From relations (4) and (5) we have
i
Aulp) - u(p) = ulp) .. = M o(p) ———— . 6)
out () in oI (P) W (p) (

The transform Au(p) happens to be the solution to the reverse problem and, therefore, the voltage
at the amplifier output is related to the ambient temperature T(r). The magnitude of T(r) is always limited
for some reason, i.e., T = Tyxfi(wr) with 1f(wr)| = 1,

In view of this, the maximum voltage at the amplifier input can be expressed as

Mg = Toac
max. -
M Tk

0

When ¢ = 0payfo(wt) with [ f,(wT)! = 1, then expression (6) yields

A > Mo,V

max

or

max ./V[TM kV ' (7)
where V = [1 /(1 +W{iw))!.

Inequality {7) defines the limit which must be imposed on omax, in order te ensure the existence
of a solution to this reverse problem in thermoelasticity. This limit is not only related to Ty but also to
the frequency w = 27r/'rcy, where 7.y denotes the duration of one heating cycle, and to the boundary con-
ditions for V in terms of my = (R' + Ry )C'. Here Ry =My /a(7) and, when the boundary conditions are of
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the third kind, one must let a (1) = 55 for an estimate of o yax.

The proposed electrical model is to some extent universal with respect to boundary conditions and,
therefore, will yield a solution also for boundary conditions of the first or the second kind., In the first
case my = (R' + Rq)C', where R, denotes some arbitrary constant resistance, and the thermal flux g(7)
is proportional to the output current from the amplifier (A).

An example of a solution to this particular reverse problem in thermoelasticity obtained by the
proposed scheme of electrical simulation is shown in Fig. 2b.

Curve 1 represents the ambient temperature T(r) corresponding to a given stress variation a(7)
(curve 3) at a constant heat-transfer coefficient a (curve 2).

The accuracy of the solution to this reverse problem was evaluated on a digital computer by the
method of elementary balances in the forward problem, with the ambient temperature T(7) found on the
electrical model. The relative error of calculated stresses did not exceed 6% of those stipulated in the
reverse problem.

NOTATION
T is the ambient temperature, °C;
o is the heat-transfer coefficient, W/m?+deg;
Qe is the coefficient of contactive heat transfer;

T is the time, sec; .

Ti, @i, i, vj (i =1, 2) are the temperature, the thermal diffusivity, the specific heat, and the specific
weight of a plate (i = 1) and of the girder (i = 2), respectively;

x,x (i=1,2) are space coordinates;

Z, d, h, ; (i =1,2,3) are the geometrical dimensions of the structural element;

oy, Ej, @, g1 {i=1,2) are the thermal stress (dyn /mm?), the elasticity modulus, the thermal expan -

sivity, and the mit strain of a plate (i = 1) and of the girder (i =2), respectively;

Wi, ki, m; (i =1,2,3) are the transfer function, the switching coefficient, and the time constant of an
aperiodic component;

ky is the amplifier gain;

P is the Laplace operator;

W{p) is the transfer function of an open-loop system;

W (p) is the transfer function of a closed-loop system;

v is the modulus of frequency characteristic;

u(Plin is the transform of an input signal;

u(P) gyt is the transform of an output signal;

a{p) is the transform of thermal stress;

Mgy, MT, Mg are the scale factors for the stress, the temperature, and the heat-fransfer coef-

ficient, respectively;

R, C! are the resistance and the capacitance which simulate the geometrical dimensions

and the thermophysical properties of a plate,
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